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What are Zippers?

Zippers are nothing to do with:

Haskell’s zip and zipWith functions, or the ZipList data type;
the Zip archive file format.

A Zipper is a data structure with a focal point.

Operations can be applied efficiently at the focal point.
The focal point can be moved efficiently.
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a sub-structure of a data structure (e.g. the last 5 elements of a list)
the same sub-structure repeatedly
adjacent sub-structures (e.g. the last 5 elements, then the last 6)
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The Problem

Sometimes we want to operate on:

a sub-structure of a data structure (e.g. the last 5 elements of a list)
the same sub-structure repeatedly
adjacent sub-structures (e.g. the last 5 elements, then the last 6)

In a purely functional setting with immutable data, we could define:

modifySuffix :: Int → ([a ] → [a ]) → [a ] → [a ]
modifySuffix n f as = let (bs, cs) = splitAt n as

in bs ++ f cs
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The Problem

Sometimes we want to operate on:

a sub-structure of a data structure (e.g. the last 5 elements of a list)
the same sub-structure repeatedly
adjacent sub-structures (e.g. the last 5 elements, then the last 6)

In a purely functional setting with immutable data, we could define:

modifySuffix :: Int → ([a ] → [a ]) → [a ] → [a ]
modifySuffix n f as = let (bs, cs) = splitAt n as

in bs ++ f cs

but this is inefficient as it traverses the list each time it is used.
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A Solution

In an imperative setting with mutable data, we might:

maintain a pointer to the sub-structure of interest
use a data type with back-pointers (e.g. doubly linked lists) to move
to adjacent sub-structures

thereby avoiding inefficient traversals.

1 2 3 4 5 [ ]: : : : :
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A Solution

In an imperative setting with mutable data, we might:

maintain a pointer to the sub-structure of interest
use a data type with back-pointers (e.g. doubly linked lists) to move
to adjacent sub-structures

thereby avoiding inefficient traversals.

1 2 3 4 5 [ ]: : : : :

Zippers are a way to do this in a purely functional setting.

A Zipper consists of:

the sub-structure of interest
a context containing everything else we need to reconstruct the
original structure
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A Zipper for Lists

The List Zipper Data Type

type ListZipper a = (ListContext a, [a ])

type ListContext a = [a ]
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A Zipper for Lists

The List Zipper Data Type

type ListZipper a = (ListContext a, [a ])

type ListContext a = [a ]

Moving the Focal Point

forward :: ListZipper a → ListZipper a

forward (ctx , (a : as)) = ((a : ctx), as)

backward :: ListZipper a → ListZipper a

backward ((a : ctx), as) = (ctx , (a : as))
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A Zipper for Lists

The List Zipper Data Type

type ListZipper a = (ListContext a, [a ])

type ListContext a = [a ]

Moving the Focal Point

forward :: ListZipper a → ListZipper a

forward (ctx , (a : as)) = ((a : ctx), as)

backward :: ListZipper a → ListZipper a

backward ((a : ctx), as) = (ctx , (a : as))

Operating at the Focal Point

modify :: ([a ] → [a ]) → ListZipper a → ListZipper a

modify f (ctx , as) = (ctx , f as)
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Binary Trees

A Binary Tree Data Type

data Tree a = Branch (Tree a) (Tree a) | Leaf a
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Binary Trees

A Binary Tree Data Type

data Tree a = Branch (Tree a) (Tree a) | Leaf a

Example

tree1 :: Tree Int

tree1 = Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))

1

2 3
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A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R
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A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Examples

treeZipper1 :: TreeZipper Int
treeZipper1 = ([ ],Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3)))

1

2 3

Neil Sculthorpe Zippers



Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Examples

treeZipper2 :: TreeZipper Int
treeZipper2 = ([(R, Leaf 1)],Branch (Leaf 2) (Leaf 3))

1

2 3
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A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Examples

treeZipper3 :: TreeZipper Int
treeZipper3 = ([(L, Leaf 3), (R, Leaf 1)], Leaf 2)

1

2 3
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A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Examples

treeZipper2 :: TreeZipper Int
treeZipper2 = ([(R, Leaf 1)],Branch (Leaf 2) (Leaf 3))

1

2 3
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A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Examples

treeZipper1 :: TreeZipper Int
treeZipper1 = ([ ],Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3)))
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A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Examples

treeZipper4 :: TreeZipper Int
treeZipper4 = ([(L,Branch (Leaf 2) (Leaf 3))], Leaf 1)

1

2 3
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A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Moving the Focal Point

left :: TreeZipper a → TreeZipper a

left (ctx ,Branch l r) = (((L, r) : ctx), l)

right :: TreeZipper a → TreeZipper a

right (ctx ,Branch l r) = (((R, l) : ctx), r)

up :: TreeZipper a → TreeZipper a

up (((L, r) : ctx), l) = (ctx ,Branch l r)
up (((R, l) : ctx), r) = (ctx ,Branch l r)

Neil Sculthorpe Zippers



Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Operating at the Focal Point

modifyTree :: (Tree a → Tree a) → TreeZipper a → TreeZipper a

modifyTree f (ctx , t) = (ctx , f t)
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Summary

A Zipper is a data structure with a focal point.

The purpose of a Zipper is to support efficient operations on
immutable data types.

Zippers can be defined for any algebraic data type.
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Exercises (optional)

1 Define a Zipper for the following data type:

data BTree a = Node (BTree a) a (BTree a) | Empty

2 Add modification and movement functions.

3 Define the following functions:

ancestors :: BTreeZipper a → [a ]
that returns the values of all nodes above the focal point
top :: BTreeZipper a → BTreeZipper a

that navigates to the top of the tree
zipperToTree :: BTreeZipper a → BTree a

that converts a Zipper into a tree (by forgetting the focal point)
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