
Zippers Problem Lists Binary Trees Summary Exercises

Zippers

Neil Sculthorpe

Functional Programming Group

Information and Telecommunication Technology Center

University of Kansas

neil@ittc.ku.edu

EECS 776
Lawrence, Kansas

28th November 2012

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

What are Zippers?

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

What are Zippers?

Zippers are nothing to do with:

Haskell’s zip and zipWith functions, or the ZipList data type;

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

What are Zippers?

Zippers are nothing to do with:

Haskell’s zip and zipWith functions, or the ZipList data type;
the Zip archive file format.

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

What are Zippers?

Zippers are nothing to do with:

Haskell’s zip and zipWith functions, or the ZipList data type;
the Zip archive file format.

A Zipper is a data structure with a focal point.

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

What are Zippers?

Zippers are nothing to do with:

Haskell’s zip and zipWith functions, or the ZipList data type;
the Zip archive file format.

A Zipper is a data structure with a focal point.

Operations can be applied efficiently at the focal point.

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

What are Zippers?

Zippers are nothing to do with:

Haskell’s zip and zipWith functions, or the ZipList data type;
the Zip archive file format.

A Zipper is a data structure with a focal point.

Operations can be applied efficiently at the focal point.
The focal point can be moved efficiently.

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

The Problem

Sometimes we want to operate on:

a sub-structure of a data structure (e.g. the last 5 elements of a list)
the same sub-structure repeatedly
adjacent sub-structures (e.g. the last 5 elements, then the last 6)

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

The Problem

Sometimes we want to operate on:

a sub-structure of a data structure (e.g. the last 5 elements of a list)
the same sub-structure repeatedly
adjacent sub-structures (e.g. the last 5 elements, then the last 6)

In a purely functional setting with immutable data, we could define:

modifySuffix :: Int → ([a] → [a]) → [a] → [a]
modifySuffix n f as = let (bs, cs) = splitAt n as

in bs ++ f cs

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

The Problem

Sometimes we want to operate on:

a sub-structure of a data structure (e.g. the last 5 elements of a list)
the same sub-structure repeatedly
adjacent sub-structures (e.g. the last 5 elements, then the last 6)

In a purely functional setting with immutable data, we could define:

modifySuffix :: Int → ([a] → [a]) → [a] → [a]
modifySuffix n f as = let (bs, cs) = splitAt n as

in bs ++ f cs

but this is inefficient as it traverses the list each time it is used.

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Solution

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Solution

In an imperative setting with mutable data, we might:

maintain a pointer to the sub-structure of interest
use a data type with back-pointers (e.g. doubly linked lists) to move
to adjacent sub-structures

thereby avoiding inefficient traversals.

1 2 3 4 5 []: : : : :

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Solution

In an imperative setting with mutable data, we might:

maintain a pointer to the sub-structure of interest
use a data type with back-pointers (e.g. doubly linked lists) to move
to adjacent sub-structures

thereby avoiding inefficient traversals.

1 2 3 4 5 []: : : : :

Zippers are a way to do this in a purely functional setting.

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Solution

In an imperative setting with mutable data, we might:

maintain a pointer to the sub-structure of interest
use a data type with back-pointers (e.g. doubly linked lists) to move
to adjacent sub-structures

thereby avoiding inefficient traversals.

1 2 3 4 5 []: : : : :

Zippers are a way to do this in a purely functional setting.

A Zipper consists of:

the sub-structure of interest
a context containing everything else we need to reconstruct the
original structure

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Lists

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Lists

The List Zipper Data Type

type ListZipper a = (ListContext a, [a])

type ListContext a = [a]

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Lists

The List Zipper Data Type

type ListZipper a = (ListContext a, [a])

type ListContext a = [a]

Moving the Focal Point

forward :: ListZipper a → ListZipper a

forward (ctx , (a : as)) = ((a : ctx), as)

backward :: ListZipper a → ListZipper a

backward ((a : ctx), as) = (ctx , (a : as))

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Lists

The List Zipper Data Type

type ListZipper a = (ListContext a, [a])

type ListContext a = [a]

Moving the Focal Point

forward :: ListZipper a → ListZipper a

forward (ctx , (a : as)) = ((a : ctx), as)

backward :: ListZipper a → ListZipper a

backward ((a : ctx), as) = (ctx , (a : as))

Operating at the Focal Point

modify :: ([a] → [a]) → ListZipper a → ListZipper a

modify f (ctx , as) = (ctx , f as)

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

Binary Trees

A Binary Tree Data Type

data Tree a = Branch (Tree a) (Tree a) | Leaf a

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

Binary Trees

A Binary Tree Data Type

data Tree a = Branch (Tree a) (Tree a) | Leaf a

Example

tree1 :: Tree Int

tree1 = Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))

1

2 3

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Binary Trees

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Examples

treeZipper1 :: TreeZipper Int
treeZipper1 = ([],Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3)))

1

2 3

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Examples

treeZipper2 :: TreeZipper Int
treeZipper2 = ([(R, Leaf 1)],Branch (Leaf 2) (Leaf 3))

1

2 3

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Examples

treeZipper3 :: TreeZipper Int
treeZipper3 = ([(L, Leaf 3), (R, Leaf 1)], Leaf 2)

1

2 3

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Examples

treeZipper2 :: TreeZipper Int
treeZipper2 = ([(R, Leaf 1)],Branch (Leaf 2) (Leaf 3))

1

2 3

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Examples

treeZipper1 :: TreeZipper Int
treeZipper1 = ([],Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3)))

1

2 3

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Examples

treeZipper4 :: TreeZipper Int
treeZipper4 = ([(L,Branch (Leaf 2) (Leaf 3))], Leaf 1)

1

2 3

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Moving the Focal Point

left :: TreeZipper a → TreeZipper a

left (ctx ,Branch l r) = (((L, r) : ctx), l)

right :: TreeZipper a → TreeZipper a

right (ctx ,Branch l r) = (((R, l) : ctx), r)

up :: TreeZipper a → TreeZipper a

up (((L, r) : ctx), l) = (ctx ,Branch l r)
up (((R, l) : ctx), r) = (ctx ,Branch l r)

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a,Tree a)

type TreeContext a = [(Direction,Tree a)]

data Direction = L | R

Operating at the Focal Point

modifyTree :: (Tree a → Tree a) → TreeZipper a → TreeZipper a

modifyTree f (ctx , t) = (ctx , f t)

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

Summary

A Zipper is a data structure with a focal point.

The purpose of a Zipper is to support efficient operations on
immutable data types.

Zippers can be defined for any algebraic data type.

Neil Sculthorpe Zippers

Zippers Problem Lists Binary Trees Summary Exercises

Exercises (optional)

1 Define a Zipper for the following data type:

data BTree a = Node (BTree a) a (BTree a) | Empty

2 Add modification and movement functions.

3 Define the following functions:

ancestors :: BTreeZipper a → [a]
that returns the values of all nodes above the focal point
top :: BTreeZipper a → BTreeZipper a

that navigates to the top of the tree
zipperToTree :: BTreeZipper a → BTree a

that converts a Zipper into a tree (by forgetting the focal point)

Neil Sculthorpe Zippers

	Zippers
	Problem
	Lists
	Binary Trees
	Summary
	Exercises

