Zippers

e

Neil Sculthorpe

Functional Programming Group
Information and Telecommunication Technology Center
University of Kansas
neil@ittc.ku.edu

EECS 776
Lawrence, Kansas
28th November 2012

Neil Sculthorpe Zippers

Zippers

What are Zippers?

Neil Sculthorpe Zippers

Zippers

What are Zippers?

@ Zippers are nothing to do with:
o Haskell's zip and zipWith functions, or the ZipList data type;

Neil Sculthorpe Zippers

Zippers

What are Zippers?

@ Zippers are nothing to do with:

o Haskell's zip and zipWith functions, or the ZipList data type;
o the Zip archive file format.

Neil Sculthorpe Zippers

Zippers

What are Zippers?

@ Zippers are nothing to do with:

o Haskell's zip and zipWith functions, or the ZipList data type;
o the Zip archive file format.

@ A Zipper is a data structure with a focal point.

Neil Sculthorpe Zippers

Zippers

What are Zippers?

@ Zippers are nothing to do with:

o Haskell's zip and zipWith functions, or the ZipList data type;
o the Zip archive file format.

@ A Zipper is a data structure with a focal point.
o Operations can be applied efficiently at the focal point.

Neil Sculthorpe Zippers

Zippers

What are Zippers?

@ Zippers are nothing to do with:

o Haskell's zip and zipWith functions, or the ZipList data type;
o the Zip archive file format.

@ A Zipper is a data structure with a focal point.

o Operations can be applied efficiently at the focal point.
@ The focal point can be moved efficiently.

Neil Sculthorpe Zippers

Problem

The Problem

@ Sometimes we want to operate on:

@ a sub-structure of a data structure (e.g. the last 5 elements of a list)
@ the same sub-structure repeatedly
o adjacent sub-structures (e.g. the last 5 elements, then the last 6)

Neil Sculthorpe Zippers

Problem

The Problem

@ Sometimes we want to operate on:

@ a sub-structure of a data structure (e.g. the last 5 elements of a list)
@ the same sub-structure repeatedly
o adjacent sub-structures (e.g. the last 5 elements, then the last 6)

@ In a purely functional setting with immutable data, we could define:
modifySuffix :: Int — ([a] — [a]) — [a] — [a]

modifySuffix n f as = let (bs, cs) = splitAt n as
in bs Hf cs

Neil Sculthorpe Zippers

Problem

The Problem

@ Sometimes we want to operate on:

@ a sub-structure of a data structure (e.g. the last 5 elements of a list)
@ the same sub-structure repeatedly
o adjacent sub-structures (e.g. the last 5 elements, then the last 6)

@ In a purely functional setting with immutable data, we could define:
modifySuffix :: Int — ([a] — [a]) — [a] — [a]
modifySuffix n f as = let (bs, cs) = splitAt n as
in bs H f cs

but this is inefficient as it traverses the list each time it is used.

Neil Sculthorpe Zippers

Problem

A Solution

Neil Sculthorpe Zippers

Problem

A Solution

@ In an imperative setting with mutable data, we might:

@ maintain a pointer to the sub-structure of interest
@ use a data type with back-pointers (e.g. doubly linked lists) to move
to adjacent sub-structures

thereby avoiding inefficient traversals.

12 003 |4 5 2]|

Neil Sculthorpe Zippers

Problem

A Solution

@ In an imperative setting with mutable data, we might:

@ maintain a pointer to the sub-structure of interest
@ use a data type with back-pointers (e.g. doubly linked lists) to move
to adjacent sub-structures

thereby avoiding inefficient traversals.

12 003 |4 5 2]|

T

@ Zippers are a way to do this in a purely functional setting.

Neil Sculthorpe Zippers

Problem

A Solution

@ In an imperative setting with mutable data, we might:

@ maintain a pointer to the sub-structure of interest
@ use a data type with back-pointers (e.g. doubly linked lists) to move
to adjacent sub-structures

thereby avoiding inefficient traversals.

12 003 |4 5 2]|

T

@ Zippers are a way to do this in a purely functional setting.

@ A Zipper consists of:

o the sub-structure of interest
@ a context containing everything else we need to reconstruct the
original structure

Neil Sculthorpe Zippers

A Zipper for Lists

Neil Sculthorpe Zippers

A Zipper for Lists

The List Zipper Data Type

type ListZipper a = (ListContext a, [a])
type ListContext a = [a]

Neil Sculthorpe Zippers

A Zipper for Lists

The List Zipper Data Type

type ListZipper a = (ListContext a, [a])

type ListContext a = [a]

Moving the Focal Point

forward :: ListZipper a — ListZipper a
forward (ctx, (a: as)) = ((a : ctx), as)

backward :: ListZipper a — ListZipper a
backward ((a : ctx), as) = (ctx, (a : as))

Neil Sculthorpe Zippers

A Zipper for Lists

The List Zipper Data Type

type ListZipper a = (ListContext a, [a])
type ListContext a = [a]

Moving the Focal Point

forward :: ListZipper a — ListZipper a
forward (ctx, (a : as)) = ((a : ctx), as)

backward :: ListZipper a — ListZipper a
backward ((a : ctx), as) = (ctx, (a : as))

Operating at the Focal Point

modify :: ([a] — [a]) — ListZipper a — ListZipper a
modify f (ctx, as) = (ctx, f as)

Neil Sculthorpe Zippers

Binary Trees

Binary Trees

A Binary Tree Data Type

data Tree a = Branch (Tree a) (Tree a) | Leaf a

Neil Sculthorpe Zippers

Binary Trees

Binary Trees

A Binary Tree Data Type

data Tree a = Branch (Tree a) (Tree a) | Leaf a

treel :: Tree Int
treel = Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))

Neil Sculthorpe Zippers

Binary Trees

A Zipper for Binary Trees

Neil Sculthorpe Zippers

Binary Trees

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a, Tree a)
type TreeContext a = [(Direction, Tree a)]
data Direction =L | R

Neil Sculthorpe Zippers

Binary Trees

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a, Tree a)
type TreeContext a = [(Direction, Tree a)]
data Direction =L | R

treeZipperl :: TreeZipper Int
treeZipperl = ([], Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3)))

L

v,

Neil Sculthorpe Zippers

Binary Trees

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a, Tree a)
type TreeContext a = [(Direction, Tree a)]
data Direction =L | R

treeZipper2 :: TreeZipper Int
treeZipper2 = ([(R, Leaf 1)], Branch (Leaf 2) (Leaf 3))

v,

Neil Sculthorpe Zippers

Binary Trees

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a, Tree a)
type TreeContext a = [(Direction, Tree a)]
data Direction =L | R

treeZipper3 :: TreeZipper Int
treeZipper3 = ([(L, Leaf 3), (R, Leaf 1)], Leaf 2)

v,

Neil Sculthorpe Zippers

Binary Trees

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a, Tree a)
type TreeContext a = [(Direction, Tree a)]
data Direction =L | R

treeZipper2 :: TreeZipper Int
treeZipper2 = ([(R, Leaf 1)], Branch (Leaf 2) (Leaf 3))

v,

Neil Sculthorpe Zippers

Binary Trees

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a, Tree a)
type TreeContext a = [(Direction, Tree a)]
data Direction =L | R

treeZipperl :: TreeZipper Int
treeZipperl = ([], Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3)))

L

v,

Neil Sculthorpe Zippers

Binary Trees

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a, Tree a)
type TreeContext a = [(Direction, Tree a)]
data Direction =L | R

treeZipperd :: TreeZipper Int
treeZipper4 = ([(L, Branch (Leaf 2) (Leaf 3))], Leaf 1)

v,

Neil Sculthorpe Zippers

Binary Trees

Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a, Tree a)
type TreeContext a = [(Direction, Tree a)]
data Direction =L | R

Moving the Focal Point

left :: TreeZipper a — TreeZipper a

left (ctx,Branch | r) = (((L, r) : ctx),/)
right :: TreeZipper a — TreeZipper a
right (ctx,Branch [r) = (((R, /) : ctx), r)
up :: TreeZipper a — TreeZipper a

up (((L, r) : ctx),l) = (ctx,Branch [r)
up (((R, 1) : ctx), r) = (ctx, Branch [r)

ot

Neil Sculthorpe Zippers

Binary Trees

A Zipper for Binary Trees

The Zipper Data Type

type TreeZipper a = (TreeContext a, Tree a)
type TreeContext a = [(Direction, Tree a)]
data Direction =L | R

Operating at the Focal Point

modifyTree :: (Tree a — Tree a) — TreeZipper a — TreeZipper a
modifyTree f (ctx, t) = (ctx, f t)

Neil Sculthorpe Zippers

Summary

Summary

@ A Zipper is a data structure with a focal point.

@ The purpose of a Zipper is to support efficient operations on
immutable data types.

@ Zippers can be defined for any algebraic data type.

Neil Sculthorpe Zippers

Exercises

Exercises (optional)

© Define a Zipper for the following data type:

data BTree a = Node (BTree a) a (BTree a) | Empty

@ Add modification and movement functions.

© Define the following functions:
@ ancestors :: BTreeZipper a — [a]
that returns the values of all nodes above the focal point
o top:: BTreeZipper a — BTreeZipper a
that navigates to the top of the tree
@ zipperToTree :: BTreeZipper a — BTree a
that converts a Zipper into a tree (by forgetting the focal point)

Neil Sculthorpe Zippers

	Zippers
	Problem
	Lists
	Binary Trees
	Summary
	Exercises

