
Lazy Evaluation Terminology Forcing Evaluation Summary

Space Leaks and Forcing Evaluation in Haskell

Neil Sculthorpe

Functional Programming Group

Information and Telecommunication Technology Center

University of Kansas

neil@ittc.ku.edu

EECS 776
Lawrence, Kansas

30th November 2012

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Lazy Evaluation

Lazy evaluation = Outermost Reduction + Sharing

Benefits:

Avoids unnecassary computation
Infinite data structures
Control-flow structures can be defined as functions
Cyclic programming

Disadvantages:

Performance hard to predict
Space leaks

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Space Leaks

A space leak is when a program uses up unnecessarily large
amounts of memory.

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Space Leaks

A space leak is when a program uses up unnecessarily large
amounts of memory.

Lazy evaluation causes a space leak when a large expression
remains unevaluated for a long time, even though it will eventually
be evaluated.

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Space Leaks

A space leak is when a program uses up unnecessarily large
amounts of memory.

Lazy evaluation causes a space leak when a large expression
remains unevaluated for a long time, even though it will eventually
be evaluated.

For example,

7+ 642 ∗ 38581− (47+ 15782 ∗ 921)
+ (let x = 4378 in (x + 5) ∗ ((x ‘div ‘ 5)− x))
+ 734 ↑ 3− 390326937

takes up more memory than

58

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Some Terminology

A Thunk is an unevaluated expression.

An expression is in Normal Form if it contains only constructors
(including literals).

An expression is in Head Normal Form if it has a constructor in the
outermost position (but it may contain thunks).

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Some Terminology

A Thunk is an unevaluated expression.

An expression is in Normal Form if it contains only constructors
(including literals).

An expression is in Head Normal Form if it has a constructor in the
outermost position (but it may contain thunks).

(Head normal form is slightly more complicated for function types, and Haskell

actually uses a variant called weak head normal form, but I’m going to ignore this for

the purposes of this lecture.)

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Thunk, Normal or Head Normal?

1 4+ 7

2 8

3 Just (3 ‘div ‘ 0)

4 Nothing

5 head (1 : 2 : 3 : [])

6 (Just ’A’,True)

7 (1+ 2) : (5− 7) : tail []

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Thunk, Normal or Head Normal?

1 4+ 7 Thunk

2 8

3 Just (3 ‘div ‘ 0)

4 Nothing

5 head (1 : 2 : 3 : [])

6 (Just ’A’,True)

7 (1+ 2) : (5− 7) : tail []

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Thunk, Normal or Head Normal?

1 4+ 7 Thunk

2 8 Normal Form

3 Just (3 ‘div ‘ 0)

4 Nothing

5 head (1 : 2 : 3 : [])

6 (Just ’A’,True)

7 (1+ 2) : (5− 7) : tail []

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Thunk, Normal or Head Normal?

1 4+ 7 Thunk

2 8 Normal Form

3 Just (3 ‘div ‘ 0) Head Normal Form

4 Nothing

5 head (1 : 2 : 3 : [])

6 (Just ’A’,True)

7 (1+ 2) : (5− 7) : tail []

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Thunk, Normal or Head Normal?

1 4+ 7 Thunk

2 8 Normal Form

3 Just (3 ‘div ‘ 0) Head Normal Form

4 Nothing Normal Form

5 head (1 : 2 : 3 : [])

6 (Just ’A’,True)

7 (1+ 2) : (5− 7) : tail []

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Thunk, Normal or Head Normal?

1 4+ 7 Thunk

2 8 Normal Form

3 Just (3 ‘div ‘ 0) Head Normal Form

4 Nothing Normal Form

5 head (1 : 2 : 3 : []) Thunk

6 (Just ’A’,True)

7 (1+ 2) : (5− 7) : tail []

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Thunk, Normal or Head Normal?

1 4+ 7 Thunk

2 8 Normal Form

3 Just (3 ‘div ‘ 0) Head Normal Form

4 Nothing Normal Form

5 head (1 : 2 : 3 : []) Thunk

6 (Just ’A’,True) Normal Form

7 (1+ 2) : (5− 7) : tail []

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Thunk, Normal or Head Normal?

1 4+ 7 Thunk

2 8 Normal Form

3 Just (3 ‘div ‘ 0) Head Normal Form

4 Nothing Normal Form

5 head (1 : 2 : 3 : []) Thunk

6 (Just ’A’,True) Normal Form

7 (1+ 2) : (5− 7) : tail [] Head Normal Form

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Forcing Evaluation: Pattern Matching

In Haskell, a thunk is evaluated to head normal form when you
pattern match on it.

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Forcing Evaluation: Pattern Matching

In Haskell, a thunk is evaluated to head normal form when you
pattern match on it.

For example,

thunk = if x > y then ’h’ : reverse "olle" else ""

foo = case thunk of

c : cs → ... -- c is the literal: ’h’
-- cs is the thunk: reverse "olle"

[] → ...

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Forcing Evaluation: seq

Haskell provides a (semantically dodgy) function that evaluates
thunks to head normal form:

seq :: a → b → b

seq a b = ... -- evaluate a to head normal form, then return b

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Forcing Evaluation: seq

Haskell provides a (semantically dodgy) function that evaluates
thunks to head normal form:

seq :: a → b → b

seq a b = ... -- evaluate a to head normal form, then return b

That is, you override Haskell’s usual lazy evaluation.

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Forcing Evaluation: seq

Haskell provides a (semantically dodgy) function that evaluates
thunks to head normal form:

seq :: a → b → b

seq a b = ... -- evaluate a to head normal form, then return b

That is, you override Haskell’s usual lazy evaluation.

Typically, this is only useful if a is used somewhere else in your
program.

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Forcing Evaluation: seq

Haskell provides a (semantically dodgy) function that evaluates
thunks to head normal form:

seq :: a → b → b

seq a b = ... -- evaluate a to head normal form, then return b

That is, you override Haskell’s usual lazy evaluation.

Typically, this is only useful if a is used somewhere else in your
program.

The idea is to use seq when:

the value of the thunk is definitely going to be used later
the thunk is using more memory than its head normal form would

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Forcing Evaluation: seq

Haskell provides a (semantically dodgy) function that evaluates
thunks to head normal form:

seq :: a → b → b

seq a b = ... -- evaluate a to head normal form, then return b

That is, you override Haskell’s usual lazy evaluation.

Typically, this is only useful if a is used somewhere else in your
program.

The idea is to use seq when:

the value of the thunk is definitely going to be used later
the thunk is using more memory than its head normal form would

Be careful, if used wrongly, seq will make your program slower!

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Forcing Evaluation: Strictness Annotations on Data Fields

Data type fields can be given strictness annotations.

A strictness annotation is an ! prefixing the field type. E.g.

data MyData = MyCon !Bool Char !(Maybe Int)

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Forcing Evaluation: Strictness Annotations on Data Fields

Data type fields can be given strictness annotations.

A strictness annotation is an ! prefixing the field type. E.g.

data MyData = MyCon !Bool Char !(Maybe Int)

A strictness annotation causes the field to be evaluated to head
normal form whenever the data constructor is evaluated.

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Forcing Evaluation: Strictness Annotations on Data Fields

Data type fields can be given strictness annotations.

A strictness annotation is an ! prefixing the field type. E.g.

data MyData = MyCon !Bool Char !(Maybe Int)

A strictness annotation causes the field to be evaluated to head
normal form whenever the data constructor is evaluated.

For example, when MyData is evaluated to head normal form:

the Bool is evaluated to True or False
the Char is not evaluated
the Maybe is evaluated to Just or Nothing
but the Int is not evaluated

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Examples

See accompanying code. . .

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell



Lazy Evaluation Terminology Forcing Evaluation Summary

Summary

Lazy evaluation brings many benefits, but can cause space leaks.

Haskell provides several mechanisms to preemptively evaluate
thunks, which can be used to prevent space leaks.

But if used wrongly, they will slow your program down by
performing unnecessary computation.

Neil Sculthorpe Space Leaks and Forcing Evaluation in Haskell


	Lazy Evaluation
	Terminology
	Forcing Evaluation
	Summary

