
FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Concepts of Functional Programming

Neil Sculthorpe

Department of Computer Science
Royal Holloway, University of London

neil.sculthorpe@rhul.ac.uk

Nottingham, England
1st April 2016

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

What is Functional Programming?

Functional programming is a paradigm.

Based on evaluating expressions, not executing commands.

Functional programs express output as a function of input,
rather than as a sequence of steps to be performed.

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Why Functional Programming?

Concise programs

Code reuse

Types provide more compile-time checks

Fewer bugs

Rapid prototyping

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Overview

Higher-order Functions

Purity

Recursion

Algebraic Data Types

Lazy Evaluation

Polymorphism

Dependent Types

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Function Syntax (Unary)

C-like languages
int sqr(int i) {
return i * i;

}

Mathematics
sqr : Z→ Z
sqr(i) = i × i

Functional language
(Haskell)

sqr :: Int → Int
sqr i = i ∗ i

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Function Syntax (Binary)

C-like languages
int hypot(int i, int j) {

return sqrt(sqr(i)+sqr(j));

}

Functional language
(Haskell)

hypot :: Int → Int → Int
hypot i j = sqrt (sqr i + sqr j)

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Higher-order Functions

Functions are first-class values.

Higher-order functions take functions as arguments and/or return
functions as results.

apply :: (Int → Int)→ Int → Int
apply f i = f i

second :: (Int → Int)→ (Int → Int)→ (Int → Int)
second f g = g

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Higher-order Functions

Functions are first-class values.

Higher-order functions take functions as arguments and/or return
functions as results.

apply :: (Int → Int)→ Int → Int
apply f i = f i

second :: (Int → Int)→ (Int → Int)→ (Int → Int)
second f g = g

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Higher-order Functions

Functions are first-class values.

Higher-order functions take functions as arguments and/or return
functions as results.

apply :: (Int → Int)→ Int → Int
apply f i = f i

second :: (Int → Int)→ (Int → Int)→ (Int → Int)
second f g = g

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Higher-order Functions - Lambda Abstractions

Lambda abstractions construct anonymous functions inline.

Syntax: (λ Argument→ Result)

E.g.

x :: Int
x = apply sqr 3

sqr :: Int → Int
sqr i = i ∗ i

is equivalent to

x :: Int
x = apply (λi → i ∗ i) 3

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Higher-order Functions - Lambda Abstractions

Lambda abstractions construct anonymous functions inline.

Syntax: (λ Argument→ Result)

E.g.

x :: Int
x = apply sqr 3

sqr :: Int → Int
sqr i = i ∗ i

is equivalent to

x :: Int
x = apply (λi → i ∗ i) 3

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Higher-order Functions - Manipulating Functions

compose :: (A→ B)→ (B → C )→ (A→ C )
compose f g = λa→ g (f a)

flip :: (A→ B → C )→ (B → A→ C )
flip f = λb a→ f a b

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Purity

The result of a pure function is completely determined by its
arguments.

A pure function thus has no computational side effects.

Advantages for: clarity, testing, debugging, refactoring,
optimisation, trustworthiness.

Data structures are immutable.

No imperative variables!

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Purity

The result of a pure function is completely determined by its
arguments.

A pure function thus has no computational side effects.

Advantages for: clarity, testing, debugging, refactoring,
optimisation, trustworthiness.

Data structures are immutable.

No imperative variables!

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Purity

The result of a pure function is completely determined by its
arguments.

A pure function thus has no computational side effects.

Advantages for: clarity, testing, debugging, refactoring,
optimisation, trustworthiness.

Data structures are immutable.

No imperative variables!

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Purity

The result of a pure function is completely determined by its
arguments.

A pure function thus has no computational side effects.

Advantages for: clarity, testing, debugging, refactoring,
optimisation, trustworthiness.

Data structures are immutable.

No imperative variables!

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Purity

The result of a pure function is completely determined by its
arguments.

A pure function thus has no computational side effects.

Advantages for: clarity, testing, debugging, refactoring,
optimisation, trustworthiness.

Data structures are immutable.

No imperative variables!

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Recursion

Functional programs use recursion instead of iteration.

C-like language

int fact(int i) {
int result = 1;

for (int n = i; n > 1; n--) {
result = result * n;

}
return result;

}

Functional language
(Haskell)

fact :: Int → Int
fact 0 = 1
fact i = i ∗ fact (i − 1)

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Recursion

Functional programs use recursion instead of iteration.

C-like language

int fact(int i) {
int result = 1;

for (int n = i; n > 1; n--) {
result = result * n;

}
return result;

}

Functional language
(Haskell)

fact :: Int → Int
fact 0 = 1
fact i = i ∗ fact (i − 1)

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Recursion

Functional programs use recursion instead of iteration.

C-like language

int fact(int i) {
int result = 1;

for (int n = i; n > 1; n--) {
result = result * n;

}
return result;

}

Functional language
(Haskell)

fact :: Int → Int
fact 0 = 1
fact i = i ∗ fact (i − 1)

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Algebraic Data Types

Functional data structures are built using algebraic data types.

Formed from sums, products and recursion.

Functions can be defined by pattern matching.

Days of the week:

data Day = Mon | Tue |Wed | Thu | Fri | Sat | Sun

isWeekend :: Day → Bool
isWeekend Mon = False
isWeekend Tue = False
isWeekend Wed = False
isWeekend Thu = False
isWeekend Fri = False
isWeekend Sat = True
isWeekend Sun = True

isWeekend :: Day → Bool
isWeekend Sat = True
isWeekend Sun = True
isWeekend = False

Binary tree with integer leaves:

data BinaryTree = Leaf Int | Node BinaryTree BinaryTree

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Algebraic Data Types

Functional data structures are built using algebraic data types.

Formed from sums, products and recursion.

Functions can be defined by pattern matching.

Days of the week:

data Day = Mon | Tue |Wed | Thu | Fri | Sat | Sun

isWeekend :: Day → Bool
isWeekend Mon = False
isWeekend Tue = False
isWeekend Wed = False
isWeekend Thu = False
isWeekend Fri = False
isWeekend Sat = True
isWeekend Sun = True

isWeekend :: Day → Bool
isWeekend Sat = True
isWeekend Sun = True
isWeekend = False

Binary tree with integer leaves:

data BinaryTree = Leaf Int | Node BinaryTree BinaryTree

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Algebraic Data Types

Functional data structures are built using algebraic data types.

Formed from sums, products and recursion.

Functions can be defined by pattern matching.

Days of the week:

data Day = Mon | Tue |Wed | Thu | Fri | Sat | Sun

isWeekend :: Day → Bool
isWeekend Mon = False
isWeekend Tue = False
isWeekend Wed = False
isWeekend Thu = False
isWeekend Fri = False
isWeekend Sat = True
isWeekend Sun = True

isWeekend :: Day → Bool
isWeekend Sat = True
isWeekend Sun = True
isWeekend = False

Binary tree with integer leaves:

data BinaryTree = Leaf Int | Node BinaryTree BinaryTree

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Algebraic Data Types

Functional data structures are built using algebraic data types.

Formed from sums, products and recursion.

Functions can be defined by pattern matching.

Days of the week:

data Day = Mon | Tue |Wed | Thu | Fri | Sat | Sun

isWeekend :: Day → Bool
isWeekend Mon = False
isWeekend Tue = False
isWeekend Wed = False
isWeekend Thu = False
isWeekend Fri = False
isWeekend Sat = True
isWeekend Sun = True

isWeekend :: Day → Bool
isWeekend Sat = True
isWeekend Sun = True
isWeekend = False

Binary tree with integer leaves:

data BinaryTree = Leaf Int | Node BinaryTree BinaryTree

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Algebraic Data Types

Functional data structures are built using algebraic data types.

Formed from sums, products and recursion.

Functions can be defined by pattern matching.

Days of the week:

data Day = Mon | Tue |Wed | Thu | Fri | Sat | Sun

isWeekend :: Day → Bool
isWeekend Mon = False
isWeekend Tue = False
isWeekend Wed = False
isWeekend Thu = False
isWeekend Fri = False
isWeekend Sat = True
isWeekend Sun = True

isWeekend :: Day → Bool
isWeekend Sat = True
isWeekend Sun = True
isWeekend = False

Binary tree with integer leaves:

data BinaryTree = Leaf Int | Node BinaryTree BinaryTree

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Algebraic Data Types

Functional data structures are built using algebraic data types.

Formed from sums, products and recursion.

Functions can be defined by pattern matching.

Days of the week:

data Day = Mon | Tue |Wed | Thu | Fri | Sat | Sun

isWeekend :: Day → Bool
isWeekend Mon = False
isWeekend Tue = False
isWeekend Wed = False
isWeekend Thu = False
isWeekend Fri = False
isWeekend Sat = True
isWeekend Sun = True

isWeekend :: Day → Bool
isWeekend Sat = True
isWeekend Sun = True
isWeekend = False

Binary tree with integer leaves:

data BinaryTree = Leaf Int | Node BinaryTree BinaryTree

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Algebraic Data Types

Functional data structures are built using algebraic data types.

Formed from sums, products and recursion.

Functions can be defined by pattern matching.

Days of the week:

data Day = Mon | Tue |Wed | Thu | Fri | Sat | Sun

isWeekend :: Day → Bool
isWeekend Mon = False
isWeekend Tue = False
isWeekend Wed = False
isWeekend Thu = False
isWeekend Fri = False
isWeekend Sat = True
isWeekend Sun = True

isWeekend :: Day → Bool
isWeekend Sat = True
isWeekend Sun = True
isWeekend = False

Binary tree with integer leaves:

data BinaryTree = Leaf Int | Node BinaryTree BinaryTree

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Algebraic Data Types - Singly Linked Lists

data List = Nil | Cons Int List

sqrList :: List → List
sqrList Nil = Nil
sqrList (Cons i l) = Cons (sqr i) (sqrList l)

mapList :: (Int → Int)→ List → List
mapList f Nil = Nil
mapList f (Cons i l) = Cons (f i) (mapList f l)

sqrList :: List → List
sqrList l = mapList sqr l

sqrtList :: List → List
sqrtList l = mapList sqrt l

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Algebraic Data Types - Singly Linked Lists

data List = Nil | Cons Int List

sqrList :: List → List
sqrList Nil = Nil
sqrList (Cons i l) = Cons (sqr i) (sqrList l)

mapList :: (Int → Int)→ List → List
mapList f Nil = Nil
mapList f (Cons i l) = Cons (f i) (mapList f l)

sqrList :: List → List
sqrList l = mapList sqr l

sqrtList :: List → List
sqrtList l = mapList sqrt l

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Algebraic Data Types - Singly Linked Lists

data List = Nil | Cons Int List

sqrList :: List → List
sqrList Nil = Nil
sqrList (Cons i l) = Cons (sqr i) (sqrList l)

mapList :: (Int → Int)→ List → List
mapList f Nil = Nil
mapList f (Cons i l) = Cons (f i) (mapList f l)

sqrList :: List → List
sqrList l = mapList sqr l

sqrtList :: List → List
sqrtList l = mapList sqrt l

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Algebraic Data Types - Singly Linked Lists

data List = Nil | Cons Int List

sqrList :: List → List
sqrList Nil = Nil
sqrList (Cons i l) = Cons (sqr i) (sqrList l)

mapList :: (Int → Int)→ List → List
mapList f Nil = Nil
mapList f (Cons i l) = Cons (f i) (mapList f l)

sqrList :: List → List
sqrList l = mapList sqr l

sqrtList :: List → List
sqrtList l = mapList sqrt l

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Algebraic Data Types - Singly Linked Lists

data List = Nil | Cons Int List

sqrList :: List → List
sqrList Nil = Nil
sqrList (Cons i l) = Cons (sqr i) (sqrList l)

mapList :: (Int → Int)→ List → List
mapList f Nil = Nil
mapList f (Cons i l) = Cons (f i) (mapList f l)

sqrList :: List → List
sqrList l = mapList sqr l

sqrtList :: List → List
sqrtList l = mapList sqrt l

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Lazy Evaluation

Purity enables lazy evaluation.

Defer evaluation of expressions until the result is needed.

Infinite data structures can be expressed directly.

E.g.

intsFrom :: Int → List
intsFrom i = Cons i (intsFrom (i + 1))

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Lazy Evaluation

Purity enables lazy evaluation.

Defer evaluation of expressions until the result is needed.

Infinite data structures can be expressed directly.

E.g.

intsFrom :: Int → List
intsFrom i = Cons i (intsFrom (i + 1))

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Lazy Evaluation

Purity enables lazy evaluation.

Defer evaluation of expressions until the result is needed.

Infinite data structures can be expressed directly.

E.g.

intsFrom :: Int → List
intsFrom i = Cons i (intsFrom (i + 1))

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Lazy Evaluation

Purity enables lazy evaluation.

Defer evaluation of expressions until the result is needed.

Infinite data structures can be expressed directly.

E.g.

intsFrom :: Int → List
intsFrom i = Cons i (intsFrom (i + 1))

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Polymorphism (Parametric)

Functional languages can infer the types of functions.

Functions can have polymorphic types.

apply :: (a→ b)→ a→ b
apply f x = f x

Data types can also be polymorphic:

data List a = Nil | Cons a (List a)

mapList :: (a→ b)→ List a→ List b
mapList f Nil = Nil
mapList f (Cons x l) = Cons (f x) (mapList f l)

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Polymorphism (Parametric)

Functional languages can infer the types of functions.

Functions can have polymorphic types.

apply :: (a→ b)→ a→ b
apply f x = f x

Data types can also be polymorphic:

data List a = Nil | Cons a (List a)

mapList :: (a→ b)→ List a→ List b
mapList f Nil = Nil
mapList f (Cons x l) = Cons (f x) (mapList f l)

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Polymorphism (Parametric)

Functional languages can infer the types of functions.

Functions can have polymorphic types.

apply :: (a→ b)→ a→ b
apply f x = f x

Data types can also be polymorphic:

data List a = Nil | Cons a (List a)

mapList :: (a→ b)→ List a→ List b
mapList f Nil = Nil
mapList f (Cons x l) = Cons (f x) (mapList f l)

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Polymorphism (Ad-hoc)

Ad-hoc polymorphic functions are restricted to classes of types.

sqr :: Num a⇒ a→ a
sqr x = x ∗ x

sort :: Ord a⇒ List a→ List a
sort l = . . .

Type constructors can also be polymorphic.

E.g. rather than,

mapList :: (a→ b)→ List a → List b
mapTree :: (a→ b)→ Tree a → Tree b
mapVector :: (a→ b)→ Vector a→ Vector b

we can define a single general purpose map:

map :: Functor t ⇒ (a→ b)→ t a→ t b

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Polymorphism (Ad-hoc)

Ad-hoc polymorphic functions are restricted to classes of types.

sqr :: Num a⇒ a→ a
sqr x = x ∗ x

sort :: Ord a⇒ List a→ List a
sort l = . . .

Type constructors can also be polymorphic.

E.g. rather than,

mapList :: (a→ b)→ List a → List b
mapTree :: (a→ b)→ Tree a → Tree b
mapVector :: (a→ b)→ Vector a→ Vector b

we can define a single general purpose map:

map :: Functor t ⇒ (a→ b)→ t a→ t b

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Polymorphism (Ad-hoc)

Ad-hoc polymorphic functions are restricted to classes of types.

sqr :: Num a⇒ a→ a
sqr x = x ∗ x

sort :: Ord a⇒ List a→ List a
sort l = . . .

Type constructors can also be polymorphic.
E.g. rather than,

mapList :: (a→ b)→ List a → List b
mapTree :: (a→ b)→ Tree a → Tree b
mapVector :: (a→ b)→ Vector a→ Vector b

we can define a single general purpose map:

map :: Functor t ⇒ (a→ b)→ t a→ t b

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Polymorphism (Ad-hoc)

Ad-hoc polymorphic functions are restricted to classes of types.

sqr :: Num a⇒ a→ a
sqr x = x ∗ x

sort :: Ord a⇒ List a→ List a
sort l = . . .

Type constructors can also be polymorphic.
E.g. rather than,

mapList :: (a→ b)→ List a → List b
mapTree :: (a→ b)→ Tree a → Tree b
mapVector :: (a→ b)→ Vector a→ Vector b

we can define a single general purpose map:

map :: Functor t ⇒ (a→ b)→ t a→ t b

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Dependent Types

Def: A function has a dependent type when the type of its result
depends on the value of its argument.

In practice: types and values can be intermixed.

Extremely powerful for encoding compile-time checks in a program.

E.g. we could add the length of a list to its type:

map :: (a→ b)→ List n a→ List n b

append :: List m a→ List n a→ List (m + n) a

sort :: List n a→ List n a

Logical properties of the program can be encoded within the
program itself.

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Dependent Types

Def: A function has a dependent type when the type of its result
depends on the value of its argument.

In practice: types and values can be intermixed.

Extremely powerful for encoding compile-time checks in a program.

E.g. we could add the length of a list to its type:

map :: (a→ b)→ List n a→ List n b

append :: List m a→ List n a→ List (m + n) a

sort :: List n a→ List n a

Logical properties of the program can be encoded within the
program itself.

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Dependent Types

Def: A function has a dependent type when the type of its result
depends on the value of its argument.

In practice: types and values can be intermixed.

Extremely powerful for encoding compile-time checks in a program.

E.g. we could add the length of a list to its type:

map :: (a→ b)→ List n a→ List n b

append :: List m a→ List n a→ List (m + n) a

sort :: List n a→ List n a

Logical properties of the program can be encoded within the
program itself.

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Dependent Types

Def: A function has a dependent type when the type of its result
depends on the value of its argument.

In practice: types and values can be intermixed.

Extremely powerful for encoding compile-time checks in a program.

E.g. we could add the length of a list to its type:

map :: (a→ b)→ List n a→ List n b

append :: List m a→ List n a→ List (m + n) a

sort :: List n a→ List n a

Logical properties of the program can be encoded within the
program itself.

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Dependent Types

Def: A function has a dependent type when the type of its result
depends on the value of its argument.

In practice: types and values can be intermixed.

Extremely powerful for encoding compile-time checks in a program.

E.g. we could add the length of a list to its type:

map :: (a→ b)→ List n a→ List n b

append :: List m a→ List n a→ List (m + n) a

sort :: List n a→ List n a

Logical properties of the program can be encoded within the
program itself.

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Conclusion

Functional programming involves several (complementary)
concepts, including:

Higher-order Functions
Purity
Recursion
Algebraic Data Types
Lazy Evaluation
Polymorphism
Dependent Types

Not all concepts appear in every functional language.

Increasingly more of these concepts are being added to
non-functional languages.

Neil Sculthorpe Concepts of Functional Programming


	FP?
	Overview
	Syntax
	Higher-order
	Purity
	Recursion
	ADTs
	Lazyness
	Polymorphism
	Dependent Types
	Conclusion

