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What is Functional Programming?

Functional programming is a paradigm.

Based on evaluating expressions, not executing commands.

Functional programs express output as a function of input,
rather than as a sequence of steps to be performed.

Neil Sculthorpe Concepts of Functional Programming



FP? Overview Syntax Higher-order Purity Recursion ADTs Lazyness Polymorphism Dependent Types Conclusion

Why Functional Programming?

Concise programs

Code reuse

Types provide more compile-time checks

Fewer bugs

Rapid prototyping
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Overview
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Purity

Recursion

Algebraic Data Types

Lazy Evaluation

Polymorphism

Dependent Types
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Function Syntax (Unary)

C-like languages
int sqr(int i) {
return i * i;

}

Mathematics
sqr : Z→ Z
sqr(i) = i × i

Functional language
(Haskell)

sqr :: Int → Int
sqr i = i ∗ i
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Function Syntax (Binary)

C-like languages
int hypot(int i, int j) {

return sqrt(sqr(i)+sqr(j));

}

Functional language
(Haskell)

hypot :: Int → Int → Int
hypot i j = sqrt (sqr i + sqr j)
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Higher-order Functions

Functions are first-class values.

Higher-order functions take functions as arguments and/or return
functions as results.

apply :: (Int → Int)→ Int → Int
apply f i = f i

second :: (Int → Int)→ (Int → Int)→ (Int → Int)
second f g = g
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Higher-order Functions - Lambda Abstractions

Lambda abstractions construct anonymous functions inline.

Syntax: (λ Argument→ Result)

E.g.

x :: Int
x = apply sqr 3

sqr :: Int → Int
sqr i = i ∗ i

is equivalent to

x :: Int
x = apply (λi → i ∗ i) 3
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Higher-order Functions - Manipulating Functions

compose :: (A→ B)→ (B → C )→ (A→ C )
compose f g = λa→ g (f a)

flip :: (A→ B → C )→ (B → A→ C )
flip f = λb a→ f a b
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Purity

The result of a pure function is completely determined by its
arguments.

A pure function thus has no computational side effects.

Advantages for: clarity, testing, debugging, refactoring,
optimisation, trustworthiness.

Data structures are immutable.

No imperative variables!
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Recursion

Functional programs use recursion instead of iteration.

C-like language

int fact(int i) {
int result = 1;

for (int n = i; n > 1; n--) {
result = result * n;

}
return result;

}

Functional language
(Haskell)

fact :: Int → Int
fact 0 = 1
fact i = i ∗ fact (i − 1)
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Algebraic Data Types

Functional data structures are built using algebraic data types.

Formed from sums, products and recursion.

Functions can be defined by pattern matching.

Days of the week:

data Day = Mon | Tue |Wed | Thu | Fri | Sat | Sun

isWeekend :: Day → Bool
isWeekend Mon = False
isWeekend Tue = False
isWeekend Wed = False
isWeekend Thu = False
isWeekend Fri = False
isWeekend Sat = True
isWeekend Sun = True

isWeekend :: Day → Bool
isWeekend Sat = True
isWeekend Sun = True
isWeekend = False

Binary tree with integer leaves:

data BinaryTree = Leaf Int | Node BinaryTree BinaryTree
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Algebraic Data Types - Singly Linked Lists

data List = Nil | Cons Int List

sqrList :: List → List
sqrList Nil = Nil
sqrList (Cons i l) = Cons (sqr i) (sqrList l)

mapList :: (Int → Int)→ List → List
mapList f Nil = Nil
mapList f (Cons i l) = Cons (f i) (mapList f l)

sqrList :: List → List
sqrList l = mapList sqr l

sqrtList :: List → List
sqrtList l = mapList sqrt l
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Lazy Evaluation

Purity enables lazy evaluation.

Defer evaluation of expressions until the result is needed.

Infinite data structures can be expressed directly.

E.g.

intsFrom :: Int → List
intsFrom i = Cons i (intsFrom (i + 1))
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Polymorphism (Parametric)

Functional languages can infer the types of functions.

Functions can have polymorphic types.

apply :: (a→ b)→ a→ b
apply f x = f x

Data types can also be polymorphic:

data List a = Nil | Cons a (List a)

mapList :: (a→ b)→ List a→ List b
mapList f Nil = Nil
mapList f (Cons x l) = Cons (f x) (mapList f l)
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Polymorphism (Ad-hoc)

Ad-hoc polymorphic functions are restricted to classes of types.

sqr :: Num a⇒ a→ a
sqr x = x ∗ x

sort :: Ord a⇒ List a→ List a
sort l = . . .

Type constructors can also be polymorphic.

E.g. rather than,

mapList :: (a→ b)→ List a → List b
mapTree :: (a→ b)→ Tree a → Tree b
mapVector :: (a→ b)→ Vector a→ Vector b

we can define a single general purpose map:

map :: Functor t ⇒ (a→ b)→ t a→ t b
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Dependent Types

Def: A function has a dependent type when the type of its result
depends on the value of its argument.

In practice: types and values can be intermixed.

Extremely powerful for encoding compile-time checks in a program.

E.g. we could add the length of a list to its type:

map :: (a→ b)→ List n a→ List n b

append :: List m a→ List n a→ List (m + n) a

sort :: List n a→ List n a

Logical properties of the program can be encoded within the
program itself.
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Conclusion

Functional programming involves several (complementary)
concepts, including:

Higher-order Functions
Purity
Recursion
Algebraic Data Types
Lazy Evaluation
Polymorphism
Dependent Types

Not all concepts appear in every functional language.

Increasingly more of these concepts are being added to
non-functional languages.
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