
Using Typings as Types

Casper Bach Poulsen, Peter D. Mosses, and Neil Sculthorpe

Department of Computer Science, Swansea University, UK
casperbp@gmail.com, p.d.mosses@swansea.ac.uk, n.a.sculthorpe@swansea.ac.uk

Abstract

In languages with dynamic scope, the free variables of an abstraction correspond to implicit param-

eters. The values of these parameters are determined by the bindings current where the abstraction is

applied, but their allowed types can be checked statically. We give a novel type system for dynamic

scope using types that involve type environments and intersections. We also explore how to give typing

rules with a high degree of modularity using typings themselves as types.

1 Introduction and Background

Dynamic scope arises when the values of the free variables of a function body are those current
when the function is applied, rather than when it was formed. Table 1 shows a conventional
type system for a simply-typed λ-calculus with static scope (using notation following [4]). These
rules are clearly unsound when the semantics requires dynamic scope.

In Sect. 2 we present a novel type system for a λ-calculus with dynamic scope. Here,
abstractions with dynamic scope are first-class values: we let them be passed as arguments and
returned by other abstractions, in contrast to previous type systems [1, 2, 6]. The required
types include typings A ` τ and intersections σ ∧ τ .

The benefits of higher-order abstractions with dynamic scope in programming are debatable
[6]. Our motivation for considering them comes from component-based semantics (CBS) [3, 7].
In this framework, the semantics of a programming language is defined by translating it to
so-called fundamental programming constructs (‘funcons’). Functions with static scope are
translated to funcon compositions of the form close(thunk(e)), where close takes an abstraction
and returns its closure. The abstraction funcon thunk(e) is a value incorporating an unevaluated
expression e; the free variables of e inherently have dynamic scope unless close is used.

CBS uses a modular variant of SOS for defining the dynamic semantics of each funcon
independently [3]. In Sect. 3, we explore how to obtain modularity and scalability in type
systems using richer forms of typings as types. As noted by Wells [8], typings in arbitrary type
systems contain all the information from typing judgements other than the term being typed.

M,N ::= n | x | (M +N) | (λx.M) | (M N)

σ, τ ::= int | t | (σ → τ)

∅ ` n : int (1)

{x : τ} ` x : τ (2)

A `M : int A ` N : int

A ` (M +N) : int
(3)

Ax ∪ {x : σ} `M : τ

A ` (λx.M) : (σ → τ)
(4)

A `M : (σ → τ) A ` N : σ

A ` (M N) : τ
(5)

A `M : τ

A′ `M : τ
A⊆A′ (6)

Table 1: A conventional type system for static scope

1

Using Typings as Types Bach Poulsen, Mosses, and Sculthorpe

2 A Type System for Dynamic Scope

When an abstraction λx.M with dynamic scope is applied to an argument, the context should
provide a bound value for each of its free variables. The types of these bound values, along
with the type of the argument to be associated with x, should ensure that M is well-typed.
We obtain types for abstractions with dynamic scope by enriching the types used in Table 1
with typings A ` τ , indicating the requirement of a context providing variables according to
the type environment A:

σ, τ ::= int | t | (σ → τ) | (A ` τ) | (σ ∧ τ)

The type of an abstraction with dynamic scope is of the form A ` (σ → τ), where σ and τ may
also involve type environments.

Rules (7–9) in Table 2 replace (4–6) in Table 1. The type environment Ax is as A except
that any type constraint for x is ignored. Type environment union A1 ∪A2 assumes A1 and A2

have disjoint domains, whereas intersection A1∧A2 combines the type constraints of A1 and A2

with intersection of the types of any common variables. The intersection A ∧ A′ is needed in
(8) because x may be required to have one type when evaluating M to an abstraction, and a
different type when evaluating the body of the abstraction; similarly in (10).

A `M : τ

∅ ` λx.M : (Ax ` (σ → τ))
(A(x)=σ) (7)

A `M : (A′ ` (σ → τ)) A ` N : σ

(A ∧A′) ` (M N) : τ
(8)

A `M : σ

A′ `M : τ
(A`σ) <: (A′`τ) (9)

M ::= · · · | close(M)

A `M : (A′ ` (σ → τ))

(A ∧A′) ` close(M) : (∅ ` (σ → τ))
(10)

Table 2: A type system for dynamic scope, and an extension with explicit closures

A typing rule corresponding to (4) can be derived for the term close(λx.M) from (7) and (10),
showing that such abstractions are supposed to have static scope (cp. [3, §3.4]).

The subtype relation on types (implicit in the use of σ∧τ) is also used on type environments
and typings. Some of its properties are shown in Table 3.

σ′ <: σ τ <: τ ′

(σ → τ) <: (σ′ → τ ′)
(11)

A′ <: A σ <: τ

(A ` σ) <: (A′ ` τ)
(12)

(Ax ∪ {x : τ}) <: Ax (13)

Ax <: A′x τ <: τ ′

(Ax ∪ {x : τ}) <: (A′x ∪ {x : τ ′})
(14)

Table 3: Some subtyping rules

As an illustrative example, consider the dynamically scoped term

M = (λf. (λy. f 1) 2) (λx. x+ y)

The abstraction λx. x+y has a free variable y that has to be bound to a value of type int when
the abstraction gets applied, and we can derive ∅ ` (λx. x + y) : ({y : int} ` (int → int)). The
application (λy. f 1) 2 satisfies this constraint, and we can derive ∅ `M : int.

2

Using Typings as Types Bach Poulsen, Mosses, and Sculthorpe

3 Modularity

For specifying a transition from M to M ′ in dynamic semantics, CBS provides the notation

R ` 〈M,S〉 W−→ 〈M ′, S′〉 where R consists of read-only entities (e.g. environments ρ), S and S′

consist of mutable entities (e.g. stores σ), and W consists of write-only entities (e.g. outputs α).
Entities can be omitted, and are then implicitly propagated in transition rules. For instance,

ρ ` 〈M,σ〉 α−→ 〈M ′, σ′〉
ρ ` 〈(M ;N), σ〉 α−→ 〈(M ′;N), σ′〉

can be abbreviated to
M →M ′

(M ;N)→ (M ′;N)

and ρ ` 〈(();N), σ〉 ·−→ 〈N, σ〉 abbreviated to (();N) → N . Modular foundations for such
abbreviations are provided by a rule-by-rule translation to MSOS (see [3]) where all auxiliary
entities are incorporated in labels.

To obtain a similar degree of modularity for typing rules, we propose to let the types of
terms be general typings that contain the corresponding types of all auxiliary entities. For

example, consider R ` 〈τ, S〉 W
=⇒ 〈τ ′, S′〉 where R may include the type environment (A), S

and S′ may include store types (Σ), and W may include interactive behaviour types (α). The
type τ is for explicit arguments of abstractions, and τ ′ for computed values. Using implicit
propagation for omitted entities, we could abbreviate

M : A ` 〈τ,Σ1〉
α1=⇒ 〈int,Σ2〉 N : A ` 〈τ,Σ2〉

α2=⇒ 〈int,Σ3〉
(M +N) : A ` 〈τ,Σ1〉

α1∪α2====⇒ 〈int,Σ3〉
to

M :⇒ int N :⇒ int

(M +N) :⇒ int

and abbreviate n : ∅ ` 〈·,Σ〉 ·=⇒ 〈int,Σ〉 to n :⇒ int.

4 Conclusion and Future Work

We have given a novel type system for a λ-calculus with dynamic scope, illustrated the typing of
terms where abstractions with free variables are passed as arguments, and suggested a technique
to obtain modularity in type systems. We now aim to prove the soundness of the type system,
extend it with universal quantification and recursive types, and obtain principal typings [4, 5, 8].

References

[1] R. Chugh. A fix for dynamic scope. In ML ’13, 2013.

[2] R. Chugh. IsoLATE: A type system for self-recursion. In ESOP ’15, volume 9032 of LNCS, pages
257–282. Springer, 2015.

[3] M. Churchill, P. D. Mosses, N. Sculthorpe, and P. Torrini. Reusable components of semantic
specifications. In TAOSD XII, volume 8989 of LNCS, pages 132–179. Springer, 2015.

[4] T. Jim. What are principal typings and what are they good for? In POPL ’96, pages 42–53. ACM,
1996.

[5] T. Jim. A polar type system. In ITRS ’00, pages 323–338. Carleton Scientific, 2000.

[6] J. R. Lewis, J. Launchbury, E. Meijer, and M. B. Shields. Implicit parameters: Dynamic scoping
with static types. In POPL ’00, pages 108–118. ACM, 2000.

[7] PLanCompS: Programming language components and specifications. http://www.plancomps.org.

[8] J. Wells. The essence of principal typings. In ICALP ’02, volume 2380 of LNCS, pages 913–925.
Springer, 2002.

3

http://www.plancomps.org

Using Typings as Types Bach Poulsen, Mosses, and Sculthorpe

Appendix

This appendix shows how we derived the typing claimed in Sect. 2, and sketches a
denotational semantics for dynamic scope. It is not intended for inclusion in the
final version.

The claimed typing is:

∅ ` (λf. (λy. f 1) 2) (λx. x+ y) : int (15)

For any A and τ ′ we derive:

{f : (A ` (int→ τ ′))} ∧A ` f 1 : τ ′ (16)

∅ ` (λy. f 1) : (({f : (Ay ∪ {y : τ} ` (int→ τ ′))} ∧Ay) ` (τ → τ ′)) (17)

{f : (Ay ∪ {y : int} ` (int→ τ ′))} ∧Ay ` (λy. f 1) 2 : τ ′ (18)

∅ ` λf. (λy. f 1) 2 : (Ayf ` ((Ay ∪ {y : int} ` int→ τ ′)→ τ ′)) (19)

Taking A = {y : int} gives:

∅ ` λf. (λy. f 1) 2 : (∅ ` ({y : int} ` int→ τ ′)→ τ ′)) (20)

We also have:

∅ ` (λx. x+ y) : ({y : int} ` (int→ int)) (21)

Taking τ ′ = int, the claimed typing follows.

A denotational semantics for dynamic scope

V = Z + F

F = Env → V → V

Env = V ar → V

[[M]] : Env → V

[[n]]ρ = n

[[x]]ρ = ρ(x)

[[M +N]]ρ = [[M]]ρ|Z + [[N]]ρ|Z
[[λx.M]]ρ = λρ′.λv.[[M]](ρ′[x 7→ v])

[[M N]]ρ = ([[M]]ρ|F)(ρ)([[N]]ρ)

4

	Introduction and Background
	A Type System for Dynamic Scope
	Modularity
	Conclusion and Future Work

